## Fourth Semester B.E. Degree Examination, December 2010 Graph Theory and Combinatories

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, choosing at least two questions from each part.

## PART - A

- 1 a. Define: i) Connected graph ii) Spanning subgraph, and iii) Complement of a graph. Give one example for each. (06 Marks)
  - b. Explain, with an example, graph isomorphism. Show that in a graph G, the number of odd degree vertices is even. (07 Marks)
  - c. Write a note on "Konigsberg-bridge problem".

(07 Marks)

- 2 a. Define complete bipartite graph. Prove that Kuratowski's second graph K<sub>3,3</sub>, is nonplanar.
  - b. Show that in any connected planar graph with 'n' vertices, 'e' edges and 'f' faces, e-n+2=f (Euler's formula). (07 Marks)
  - c. Define chromatic number and chromatic polynomial. Find the chromatic polynomial for the graph given below: (07 Marks)



3 a. Define: i) Tree

ii) Binary rooted tree, and

iii) Prefix code.

Give one example for each.

(06 Marks)

b. Prove that a tree with 'n' vertices has (n-1) edges.

(07 Marks)

c. Find all the spanning trees of the graph given below:

(07 Marks)



- 4 a. Define: i) Matching ii) Complete matching and iii) Edge-connectivity (with example).
  (06 Marks)
  - b. Find a minimal spanning tree using prims algorithm for the weighted graph given below:
    (07 Marks)



Fig. Q4 (b)

c. Find the maximum flow possible between the vertices A and D for the following graph: 4

(07 Marks)



## PART - B

- a. In how many ways can one distribute 10 identical white marbles among six distinct (06 Marks) containers?
  - b. i) How many 9 letter words can be formed using the letters of the word "Difficult"?
    - ii) A certain question paper contains two parts A and B each having 4 questions. How many different ways a student can answer 5 questions by selecting at least two questions from each part?
  - c. Let a triangle ABC be equilateral, with AB = 1. Show that if we select 10 points in the interior of this triangle, there must be at least two points, whose distance apart is less than  $\frac{1}{3}$ . (07

Marks)

- a. In how many ways can the integers 1, 2, 3, ....10 be arranged in a line, so that, no even (06 Marks) integer is in its natural place?
  - b. In how many ways can one arrange the letters in CORRESPONDENTS so that:
    - There are exactly two pairs of consecutive identical letters.

ii) MISSISSIPPI

- (07 Marks) There are at least three pairs of consecutive identical letters. ii)
- c. An apple, a banana, a mango and an orange are to be distributed to four boys B1, B2, B3 and B<sub>4</sub>. The boys B<sub>1</sub> and B<sub>2</sub> do not wish to have the apple, the boy B<sub>3</sub> does not want the banana or mango and B4 returns the orange. In how many ways the distribution can be made so that no boy is displeased?
- a. Let  $f(x) = (1 + x + x^2)(1 + x)^n$ , where  $n \in z^+$ . Find the coefficient of the following in the expansion of f(x):
  - iii)  $x^r$ ,  $0 \le r \le (n+2)$ ,  $r \in Z$ . (06 Marks) i)  $x^7$
  - b. In how many ways can 12 oranges be distributed among three children A, B, C so that A gets at least four, B and C get at least two but C gets no more than five?
  - c. Find the exponential generating function for the number of ways to arrange 'n' letters,  $n \ge 0$ , selected from each of the following words:

iii) ISOMORPHISM

- a. The number of bacteria in a culture is 1000 (approximately) and this number increases 250%
- 8 every two hours. Use a recurrence relation to determine the number of bacteria present after (06 Marks) one day.
  - b. Solve the recurrence relation,

i) HAWAII

$$a_n - 6a_{n-1} + 9a_{n-2} = 0$$
,  $n \ge 2$ , given  $a_0 = 5$ ,  $a_1 = 12$  (07 Marks)

c. Find the generating function for the recurrence relation,

$$a_{n+2} - 5a_{n+1} + 6a_n = 2$$
,  $n \ge 0$ , with  $a_0 = 3$ ,  $a_1 = 7$ . Hence solve it. (07 Marks)

\* \* \* \* \*